Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys

Author(s):  
Paul S. Buckmaster ◽  
David G. Amaral
1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Vol 39 (48) ◽  
pp. 9570-9584 ◽  
Author(s):  
Douglas GoodSmith ◽  
Heekyung Lee ◽  
Joshua P. Neunuebel ◽  
Hongjun Song ◽  
James J. Knierim

2007 ◽  
Vol 97 (6) ◽  
pp. 4036-4047 ◽  
Author(s):  
Ben Nahir ◽  
Chinki Bhatia ◽  
Charles J. Frazier

The hippocampus contains one very strong recurrent excitatory network formed by associational connections between CA3 pyramidal cells and another that depends largely on a disynaptic excitatory pathway between dentate granule cells. The recurrent excitatory network in CA3 has long been considered a possible location of autoassociative memory storage, whereas changes in the level and arrangement of recurrent excitation between granule cells are strongly implicated in epileptogenesis. Hilar mossy cells are likely to receive collateral input from CA3 pyramidal cells and they are key intermediaries (by mossy fiber inputs) in the recurrent excitatory network between granule cells. The current study uses minimal stimulation techniques in an in vitro preparation of the rat dentate gyrus to examine presynaptic modulation of both mossy fiber and non-mossy fiber inputs to hilar mossy cells. We report that both mossy fiber and non-mossy fiber inputs to hilar mossy cells express presynaptic γ-aminobutyric acid type B (GABAB) receptors that are subject to tonic inhibition by ambient GABA. We further find that only non-mossy fiber inputs express presynaptic muscarinic acetylcholine receptors, but that bath application of cholinergic agonists produces action potential–dependent increases in ambient GABA that can indirectly inhibit mossy fiber inputs. Finally, we demonstrate that mossy cells express high-affinity postsynaptic GABAA receptors that are also capable of detecting changes in ambient GABA produced by cholinergic agonists. Our results are among the first to directly characterize these important collateral inputs to hilar mossy cells and may help facilitate informed comparison between primary and collateral projections in two major excitatory pathways.


2000 ◽  
Vol 39 (12) ◽  
pp. 2288-2301 ◽  
Author(s):  
Nicola Berretta ◽  
Aleksej V Rossokhin ◽  
Alexander M Kasyanov ◽  
Maxim V Sokolov ◽  
Enrico Cherubini ◽  
...  

2014 ◽  
Vol 5 ◽  
pp. JCM.S13738 ◽  
Author(s):  
Satoru Sakuma ◽  
Daisuke Tokuhara ◽  
Hiroshi Otsubo ◽  
Tsunekazu Yamano ◽  
Haruo Shintaku

Background The time course of cytokine dynamics after seizure remains controversial. Here we evaluated the changes in the levels and sites of interleukin (IL)-1β expression over time in the hippocampus after seizure. Methods Status epilepticus (SE) was induced in adult Wistar rats by means of intraperitoneal injection of kainic acid (KA). Subsequently, the time courses of cellular localization and IL-1β concentration in the hippocampus were evaluated by means of immunohistochemical and quantitative assays. Results On day 1 after SE, CA3 pyramidal cells showed degeneration and increased IL-1β expression. In the chronic phase (>7 days after SE), glial fibrillary acidic protein (GFAP)–-positive reactive astrocytes–-appeared in CA1 and became IL-1β immunoreactive. Their IL-1β immunoreactivity increased in proportion to the progressive hypertrophy of astrocytes that led to gliosis. Quantitative analysis showed that hippocampal IL-1β concentration progressively increased during the acute and chronic phases. Conclusion IL-1β affects the hippocampus after SE. In the acute phase, the main cells expressing IL-1β were CA3 pyramidal cells. In the chronic phase, the main cells expressing IL-1β were reactive astrocytes in CA1.


Author(s):  
Federico Brandalise ◽  
Stefano Carta ◽  
Roberta Leone ◽  
Fritjof Helmchen ◽  
Anthony Holtmaat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document